

The Need for Conductive Space Suits: A Summary of DREAM2 findings

W. M. Farrell¹, T. L. Jackson¹, J. R. Marshall², and G. T. Delory³

1- NASA/Goddard SFC2- SETI Institute3- Univ. California, Berkeley

What is a Space Suit?

- Multi-tasking outfit
- Life support
- Interface with environment
 - Pressure Vessel –yes!
 - Thermal regulation yes!
 - Micro-meteoroid protection yes!(?)
 - Protection from radiation?[Hu et al., 2008]
 - Reduce Dust Adhesion?[Christoffersen et al, 2009]
 - Plasma/Electrostaticequilibrium? [Jackson et al., 2011]

Can we improve these other aspects?

Suit Immersed in a Plasma (Conducting) Medium

Steady-state current balance is:

$$dQ/dt = I_{photoelec} + I_{elec} + I_{ion} + I_{secondary elec} = 0$$

$$Q = Q_0$$
 constant, $dQ/dt = 0$

However, if have a dynamic source

$$dQ/dt = S(t) + I_{photoelec} + I_{elec} + I_{ion} + I_{secondary elec}$$

$$Q = Q(t)$$
, $dQ/dt = nonzero value$

- Photo-electron currents, I_p
- Thermal flux of solar wind electrons, I_e
- Flow of solar wind ions, l_i
- Secondary electrons,
 I_s
- Source, S(t)

Where to apply these charging equations (locally or globally)?

- Insulating dielectric: Apply equations locally
- Conducting body: Apply equations globally

Non-Conductive (differential potentials)

Conductive (iso-potential)

Differential charging across body

Different regions ARE NOT electrically connected Different regions ARE electrically connected Uniform Charging across body

Analog: Spacecraft Differential Charging Issues

In terrestrial magnetosphere: charging anomalies typically on nightside (eclipse) when in larger geomagnetic tail current flows [Garrett, 1985]

- Applications Technology Spacecraft (ATS) 5 and 6 (late 60's-70s) reported large negative ~ 10kV potentials in eclipse and in the hot terrestrial plasma sheet
- in 1979, Spacecraft Charging AT High Altitudes (SCATHA) studied the effect patch plate with different dielectric that could develop differential potentials of 1-3 kV.

Given these early studies, its now common practice to require spacecraft skin conductivity requirements

Analog: Outer skin of Spacecraft

Solar Probe Plus Charging, Ergun et al., 2010

- For spacecraft immersed in space plasmas, usually have well-stated skin conductivity requirements
- Highly conductive skin everywhere
- Eliminates differential charging

Why don't we have strict conductivity requirements for space suits – that are also exposed to the space plasma environment?

Surface Astronaut Charging Equivalent

Circuit

- On surface, now add dynamic terms to current balance:
 - Moving over surface creates a triboelectric source of charge, S(t)
 - Surface 'ground', but the Moon is a very poor conductor (in shadowed regions can be as low as 10⁻¹⁷ S/m) [Carrier et al., 1991]
 - On dayside, photoelectrons and solar wind ions provide a good ground. The medium is conductive.
 - Problem areas: Nightside and shadow no photoelectron currents, and have reduced plasma currents

$$S(t) + I_{grnd} + I_{photoelec} + I_{elec} + I_{ion} + I_{secondary elec} = dQ/dt$$

Farrell et al, 2008 Jackson et al., 2011 - Actually grounded to the local plasma, and not to 'surface' ground

Surface Astronaut Charging Equivalent

Circuit

- On surface, now add dynamic terms to current balance:
 - Moving over surface creates a triboelectric source of charge, S(t)
 - Surface 'ground', but the Moon is a very poor conductor (in shadowed regions can be as low as 10⁻¹⁷ S/m) [Carrier et al., 1991]
 - On dayside, photoelectrons and solar wind ions provide a good ground. The medium is conductive.
 - Problem areas: Nightside and shadow no photoelectron currents, and have reduced plasma currents

$$S(t) + I_{grnd} + I_{photoelec} + I_{elec} + I_{ion} + I_{secondary elec} = dQ/dt$$

Farrell et al, 2008 Jackson et al., 2011 - Actually grounded to the local plasma, and not to 'surface' ground

Suit Charging at Various Locations on the Lunar Surface

Solid Line – Solar wind exposure (e.g., at terminator)

Dotted Line - \sim 1% of solar wind plasma (e.g., wake behind terminator)

Dashed Line - \sim 0.01% of solar wind plasma (e.g., anti-solar point, polar crater)

For surface roving, want to stay in plasma flow, stay connected to the electrical ground!

Astronauts at an Asteroid

Asteroid

Apollo 12 AL7 Suit

Triboelectric Series Human body Glass Nylon Wool Lead Cotton Alan Bean's suit Aluminum Paper Steel Wood Gelatin Nickel, copper Gold, platinum Natural rubber Sulfur $MEAN = 10.7 \mu m$ Acetate N=840 Number of grain Polyester Celluloid

50

Grain diameter (µm)

Urethane Polyethylene Vinyl Silicon

Teffon

- Christoffersen, Lindsay, et al., 2009
- Multi-layer w/ outer skin T-164 woven teflon
- Insulating fibers mechanically trapped dust
- Generally more favorable to attach plagioclase feldspar dust, up to 10⁵ grains/cm², <10 microns>
- Teflon is an insulator and a strong tribo-electric generator when rubbing (with just about anything)
- We wrapped the astronauts in woven dielectric material ideally suited for dust collecting

Teflon Tribocharging of Granular Material

TABLE II The average triboelectric charge-to-mass ratio (nC/g) for different particle size fractions (µm), using cyclone tribocharger

		Feldspar			Quartz			Wollastonite		
Tribocharger/		-600	- 300	-150	- 600	- 300	-150	-600	- 300	- 150
Temperature		+300	+ 150	+75	+ 300	+ 150	+75	+300	+ 150	+ 75
Brass	room*	-2.31	-8.72	-25.2	- 5.69	-18.1	-69.1	-6.54	-14.3	-47.2
	50°C	-4.49	-12.0	-27.3	- 8.98	-28.7	-38.0	-12.0	-19.3	-89.2
Steel	room*	-2.61	-4.52	-12.1	-4.99	-12.7	-7.68	-3.75	-6.94	- 10.9
	50°C	-3.96	-6.37	-17.7	-5.95	-13.2	-26.2	-4.03	-7.43	- 16.4
Teflon	room*	25.0 28.7	69.3 86.9	209 160	8.91 -16.7	26.3 - 28.3	44.1 82.4	48.5 70.9	198 173	399 344
Perspex	room*	-15.4	-43.2	-683	-12.6	- 35.4	-83.1	-4.92	-11.5	- 272
	50°C	-22.4	-76.4	-173	-51.1	- 84.6	-584	-9.50	-39.2	- 48.5

Room temperature.

Manouchehri et al., 2001

Z-2 Suits: Surface Specific EVA Garment

- Ross et al., 2014
- Still in development at JSC via AES funding
- Now integrating environmental considerations like impact protect
- S-glass fiberglass layer sandwiched with IM10 composite fiber layer
- DREAM2 team
 recommendation: that outer
 skin have spacecraft-like plasma
 conductivity requirements.
- Initiated discussion with JSC group

Suit Optimization for the Surface-Plasma Environment

$$dQ/dt = S_{tribo} - J_{env}A$$

$$J_{env}A >> S_{tribo}$$

- Reduce Tribocharging, S: Make the areas that contact regolith surface (Boots, gloves) of material close to the triboelectric potential or work function of the asteroids regolith
 - Likely specific to the body itself, and composition of regolith at body
- Increase Dissipation Area, A: improve electrical connection to plasma medium by having a large conductive return current collecting area...connect all points on the suit electrically (i.e., make conductive)

Stay in dense plasmas, J_{env}

Optimizations: Where to step along the Surface-Plasma Interface?

Table 1

Electron, ion and secondary electron currents for various

regions.at th	he Moon	LCSS)		Polar		
Current	Day	Term	Night	Crater		
J_{e-env} (A/m	1×10^{-6}	3.52×10				
Ji-env (A/m	3.2×10^{-7}	3.52×10	$0^{-8} 4 \times 10^{-10}$	1.6×10^{-11}		
J_{s-env} (A/m	0 (1	0	4×10^{-11}	5.1×10^{-10}		
J_{p-env} (A/m	4×10^{-6}	0	0	0		
	~5 սA/m²		~0.8 nA/m²			

$$au^+ \sim (kT_e/e)(C/|J_{amb}^-|A)$$
 $au^- \sim (kT_i/e)(C/|J_{amb}^+|A)$

'Best Practices' for ESD Avoidance:

- 1) Have part of human system in sunlight
- 2) Have human system in high plasma density flow
- 3) Shy away from shadowed regions

Conclusions & Recommendations

- Space suits should be conductive: Avoid differential charging, maximize return current collection area, A
- For roving human system: No longer expect current balance due to tribo-electric source term, S
- Key Takeaway: Want to maintain J_{env}A >> S_{tribo}
 - Boot and glove material could having a contact potential close to that of the regolith... tailored to the environment
 - Keep J_{env} large: Stay in sunlight, avoid shadowed regions
- Possibly include portable plasma discharge device? Electron emitter.
- Next step: Consider a tethered astronaut at an asteroid, consider the effect of outgassing and near-suit exo-ions (which might act to remediate charge buildup), more detailed roving astronaut model

Backup

Nice example of conducting applications: Shuttle's SpaceLab-2 (1985)

 Early debate was if the electron beam escaped the near shuttle region

If electrons trapped V_{shuttle} ~ +1000V

However, Vehicle charging found < + 60 V potentials [Neubert et al. 1988]

Why so low? Shuttle engine faring are 30 m², electrically connected to shuttle bay, and draw in ionosphere current from rear to compensate for beam

Analog: Outer skin of Spacecraft

Solar Probe Plus Charging, Ergun et al., 2010

- For spacecraft immersed in space plasmas, usually have well-stated skin conductivity requirements
- Highly conductive skin everywhere
- Eliminates differential charging

Why don't we have strict conductivity requirements for space suits – that are also exposed to the space plasma environment?